

High-Resolution Seismic Data Segmentation using Deep Pyramid Scene Parsing Models with Cascade

Ashutosh Kumar and Amit Priyadarshan

ABSTRACT

High resolution subsurface imaging has been identified as one of the six grand challenges for the petroleum industry. Obstacles to solution of this challenge are remote-sensing limitations imposed by the rock physics, instrumentation limits and computations challenges. This paper contributes to the solution of computational challenges by providing application of CascadePSP, a deep learning model, for high resolution seismic-segmentation. Specifically we validate performance of the model on subsurface salt identification.

Proposed approach uses Pyramid Scene Parsing (PSP) networks to extract seismic features from 2D images, irrespective of input-image resolution. It compliments PSP with an implementation of Cascade, that performs multi-level refinement of extracted features and calculates losses using segmentation-labels, that is generated by exploiting ground truth labels. Ground truth label in case of subsurface salt-body segmentation is a 2D image with pixels labelled as salt or sediment. It captures multiple imperfect seismic-segments and refine them to obtain high-resolution segmentation.

For the case of salt-segmentation, the proposed model achieves 92% accuracy, as measured by Intersection-over-union. PSP network is made of a max-pooling layer, followed by convolution layers, upsampling layers and finally a concatenation layer. It extracts seismic features from the input irrespective of their resolution. Further Cascade modules in the proposed method introduces two-step refinement for different seismic segments. It reduces spatial dimensions of extracted seismic features, then recovers them and finally refine them. Specifically for salt-segmentation we used single channel grayscale images with boundaries between different rock types. Though the results in the paper present segmentation of salt-bodies, the presented methodology will generalize to other seismic interpretation methods such as facies classification, fault detection etc.

Novelty of the paper lies in presentation of a unique deep learning model, to produce high-resolution segmentation of seismic images.

Kumar, A. and A. Priyadarshan, 2021, High-resolution seismic data segmentation using deep pyramid scene parsing models with cascade: GeoGulf Transactions, v. 71, p. 437.

NOTES