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ABSTRACT 
 

In spite of several thousand horizontal wells drilled in the Austin Chalk, 
regional productivity analyses are limited.  These studies predate modern 
hydrofracture treatments and increased drilling in the Karnes Trough re-
gion.  This study incorporates recent production trends and includes recent 
completion techniques within the Austin Chalk play in Texas.  Furthermore, 
we have investigated the Karnes Trough fault and fractured trend to deter-
mine potential influence on productivity. 

We performed an exploratory analysis to investigate the impact of 
these faults on well production.  Following this, we used completion and 
fault-distance data to build a gradient-boosting model predicting per-well 
productivity.  The gradient-boosting model was tuned through cross-
validated Bayesian optimization.  Finally, we interpreted the gradient boost-
ing model by generating SHAP (SHapley Additive exPlanations) values to 
explain the factors that influence model predictions. 

The best wells are drilled downdip within two miles of major faults, but 
the variance in productivity is high in these areas.  Analysis of the machine 
learning results shows the most important fault parameters are sinuosity 
and the closest distance between a well and its nearest fault.  Fault bearing 
and length are of secondary importance.  Apart from fault properties, early 
producing gas-oil ratios and well spacing are key to productivity. 
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INTRODUCTION 
 
The Austin Chalk has been a drilling target for nearly 100 years.  The U.S. Geological Survey 

(USGS) resource evaluation (Pearson, 2010) predicted the chalk in Texas had the potential for 
producing 1,348 million barrels of oil and condensate; they estimate that 985 million barrels of 
that total come from the Pearsall and Giddings areas (Fig. 1).  Given recent drilling results, the 
USGS estimate for oil resources west of Giddings may be low. 

Early production from the Austin Chalk illustrated that most hydrocarbon was recovered 
from natural fractures that comprise a permeability network and facilitate drainage within low-
permeability matrix (Corbett et al., 1994).  In the 1980s, operators started drilling horizontal wells 
to better connect to the natural fractures and improve recovery (Haymond, 1991).  The Austin 
Chalk has seen renewed activity with the advent of horizontal, multi-stage, hydrofractured wells 
in the past five years.  

Through the 1990s, the typical Austin Chalk lithology was seen as chalk with streaks of marly 
mudstone, forming individual beds up to 25 feet thick (Durham and Hall, 1991; Haymond, 1991; 
Hovorka and Nance, 1994).  More recently, Loucks et al. (2020) distinguished several lithofacies 
of variable thickness but characterized a common interval within the Austin Chalk containing 
laminated, total organic carbon (TOC) rich rocks that may be a good source of hydrocarbons.  
We do not know the extent to which the oil in the Austin Chalk is internally sourced versus 
sourced from underlying formations such as the Eagle Ford.  

Martin et al. (2011) investigated whether the Eagle Ford and Austin Chalk were part of the 
same system.  They concluded that Eagle Ford hydrocarbons migrated to the Austin Chalk in 
the Pearsall area, but near the Karnes Trough where fault-related fractures are high, it was diffi-
cult to determine two distinct source rock influences on hydrocarbon accumulations.  Gherabati 
et al. (2018) found that recoveries for wells targeting the Eagle Ford in the Karnes Trough some-
times exceeded their oil in place estimates, indicating some flow between the Eagle Ford and 
Austin Chalk there. 

Both published resource assessments (Pearson, 2010; Martin et al., 2011) predate massive 
hydraulic fracture treatments on par with other US resource plays (Fig. 2).  Starting in 2014, the 
amount of fluid and proppant used in hydraulic fracturing has increased significantly in each re-
gion of the Austin Chalk, but those studies have relied on data from before 2010. 

Figure 1.  Horizontal wells separated into major fields of the Texas Austin Chalk.  From 
East to West, the regions are Brookeland (Brookeland, Magnolia Springs, and Double A 
Wells North fields), Giddings, Karnes Trough (Sugarkane Field), and Pearsall in the Mav-
erick Basin (Pearsall Field). 
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With current completion practices, how much do fault-related natural fractures influence 
productivity?  We address this question in this study.  To do this, we gathered production data 
and perform physics-based production analysis to determine productivity for every well.  We 
then gathered fault and well data to build a machine learning model that could predict produc-
tivity. 

Several groups have utilized machine learning to predict performance in tight oil plays 
(LaFollette et al., 2014; Attenasi and Freeman, 2020; Liao et al., 2020).  These papers considered 
the Eagle Ford, Bakken, and Cardium, respectively, but no such papers focused on the Austin 
Chalk.  Also, these studies consider early production metrics like the first 6 months or yearly pro-
duction, which might not be indicative of full recovery (Male and Duncan, 2021). 

Other studies have gone further using post-hoc analysis to interpret machine learning mod-
els (Molnar, 2019).  In oil and gas, partial dependence plots (Male et al., 2017), permutation fea-
ture importance (Male and Duncan, 2020), and SHAP (SHapley Additive exPlanations) (Sathaye 
et al., 2020; Yang et al., 2020) have been used to find the predictive power of different inputs.  

This study is a regional analysis of production for the Texas Austin Chalk horizontal well 
play.  It used interpretable machine learning to determine the factors influencing ultimate recov-
ery for Austin Chalk wells drilled near faults in the Karnes Trough region.  We found that all of 
the best performing wells were within two miles of the nearest fault.  Among those wells, the 
most important parameter was the hydraulic fracturing intensity. 

 
 

METHODS 
 
First, we collected geologic and well-specific data.  Then, we analyzed the well data to esti-

mate hydraulic fracturing intensity and productivity.  Next, we matched wells to their corre-
sponding faults.  Then, we used the data and interpretations to build a machine learning model 
to predict productivity.  Finally, we interpreted the model to understand the primary drivers of 
well productivity.  

Fault locations and attributes come from several sources, including proprietary seismic in-
formation and published results, such as Ewing and Lopez (1991).  In all, 224 faults were mapped, 
and their length, bearing, and sinuosity were measured. 

Figure 2.  Average proppant and hydrofracture fluid injection intensity by quarter.  
Shading shows bootstrap-calculated 95% confidence intervals in the mean value.  Prop-
pant use has gone from none to 2200 pounds per foot since 2008.  Fluid used in com-
pletions has intensified from 250 gallons per foot to about 2000 gallons per foot. 
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Production data, completion data, and directional surveys came from IHS Enerdeq, which 
draws data from the Texas Railroad Commission and FracFocus.  In Texas, operators report pro-
duction from oil wells by lease with yearly well tests.  IHS uses well test and lease data to back-
allocate production to the individual well. 

For each well, we calculated a 20–year Estimated Ultimate Recovery (EUR).  We used a 
physics-based scaling method for predicting production from hydrofractured wells completed in 
undersaturated oil reservoirs (Male, 2019), which is an extension of a shale gas model (Patzek et 
al., 2013).  This method has been used before; Male et al. (2016) applied the physics-based ap-
proach to production from the Eagle Ford formation that underlies the Austin Chalk. 

We de-surveyed wells, converting their directional surveys to 3D well paths, to determine 
interwell distances and well-to-fracture distances.  This included identifying parent and child 
wells.  For wells within 2 miles of a fault, fault properties for the nearest fault were assigned to 
the well.  Geopandas and Shapely took care of storing and manipulating geographic information 
and handling geodetic systems. 

We chose granient-boosting trees to predict per-well productivity from geologic, spacing, 
completion, and fluid parameters.  Physical understanding of the impact of several parameters 
on recovery is limited, and there is no reason to believe that trends are linear.  Therefore, a non-
parametric tree-based approach is appropriate for modeling productivity.  With gradient-
boosting trees, the model uses an ensemble of hundreds of weak tree learners.  The model trains 
each learner on the residuals of the previous model (Friedman, 2001).  With this approach, the 
final model can learn complicated relationships between input variables and the per-well 
productivity, without overfitting. 

We used the LightGBM (Ke et al., 2017) and XGBoost (Chen and Guestrin, 2016) machine 
learning tools to model productivity.  These are fast implementations of gradient-boosting deci-
sion trees. 

Gradient-boosting decision trees have several hyperparameters that must be tuned to en-
sure the best performance and generality.  Hyperparameters control the complexity of a ma-
chine learning model and are tuned to maximize the accuracy on data that was held back from 
training with cross-validation.  After setting the learning rate to 0.05, we used the Bayesian Op-
timization python package to find the best hyperparameters.  Scores were calculated on five-
times repeated five-fold cross validation with a training set of 75% of wells.  The objective func-
tion was squared error of the logarithm of oil EUR per length, and the metric used was root 
mean squared error (RMSE).  

Several interpretable machine learning approaches are available for interpreting machine 
learning models.  We chose to use Shapely additive explanations (Lundberg et al., 2018), which 
are model agnostic and assign feature importance for every decision using a cooperative game-
theory approach. 

SHAP values allow us to interpret the machine learning models (Lundberg et al., 2018).  The 
SHAP approach uses cooperative game theory to assign the influence of each input variable on 
the model output for each well.  High SHAP values indicate a strong positive influence, near-zero 
SHAP values a weak influence, and strongly negative SHAP values a sizable negative influence.  
Recently, oil and gas researchers have used SHAP to explain well productivity (Sathaye et al., 
2020; Yang et al., 2020).  

We calculated SHAP values for each input on each well productivity prediction after train-
ing.  This allowed a direct comparison between, for instance, the impact of a particular distance 
from the well to the fault and the impact of the gas-oil ratio for that same well.  The average ab-
solute SHAP value for an input parameter is a useful rank of its relative importance to the mod-
el’s predictions.  In addition, the shape of the SHAP value versus input value plot shows how 
changes to the input impact the output prediction.  If this relationship agrees with physical intui-
tion, then that adds confidence to the model, and relationships that disagree with expectation 
can provide avenues for further investigation to determine root causes or invalidate the model. 
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RESULTS 
 
Figure 3 shows a map of estimated ultimate recoveries for Austin Chalk horizontals.  Similar 

to Martin et al. (2011), we divided the Austin Chalk into four regions:  (from East to West) the 
Brookeville, Giddings, Karnes Trough, and Pearsall.  The results are structured thus:  We com-
pared completions and productivity for each region from 2004 to present day.  Then, we fo-
cused on the effect of faults in the Karnes Trough region. 

 
 

Completions Trends 
 
Operators have employed large hydrofracture treatments in the Austin Chalk since the 

1970s, with single-stage horizontal wells appearing in the 1980s (Haymond, 1991).  This remained 
typical until the 2010s. 

From 2003–2014, operators drilled 60–100 wells per year in the Austin chalk, concentrated 
in the Giddings region.  After 2014, development shifted to the Karnes Trough area.  In both 2017 
and 2018, over 100 wells were drilled near the Karnes Trough. 

Since 2008, more stages have been hydrofractured and completions jobs inject four times 
more fluid per foot of lateral (Fig. 2).  A step change in completions intensity occurred around 
2016.  Since that point, completions are comparably intense to those seen in the Permian basin.  
However, while a typical well in the Midland basin is 10,000 feet long, average lateral lengths 
have remained around 5000 feet in the Austin Chalk. 

 
 

Productivity 
 
From 2004 through 2015, 20–year EURs have remained around 30 barrels per foot, of which 

about one-third is in the first year.  Since that time, EURs have increased to 60 barrels per foot, 
roughly in line with wells drilled in Wolfcamp and Bone Springs formations of the Delaware Ba-
sin (Fig. 4). 

Figure 3.  A map of Estimated Ultimate Recovery (EUR) for horizontal wells in the Austin 
Chalk play.  County lines are gray.  Wells with more than 0.5 million barrels of expected 
recovery are concentrated in the Brookeland (Easternmost) and Karnes Trough (second 
Westernmost) areas.  Texas does not require strict field boundaries. 
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Increased productivity has coincided with more intense hydrofracture treatments and the 
shift of focus to wells in the Karnes Trough region.  Aggregating wells by region indicates that, 
although each region has seen larger hydrofracture treatments, the best response to treatments 
has come from near the Karnes Trough. 

 
 

Influence of Fault Zones—Karnes Trough 
 
Comparing the locations of faults and horizontal wells, operators drilled wells near and per-

pendicular to faults (Fig. 5).  A histogram of the distance of closest approach between well lat-
erals and faults shows operators drill most wells within two miles of the nearest fault in the 
Karnes Trough (Fig. 6a).  High producing wells do abut the faults, but the variation in productiv-
ity is high (Fig. 6b). 

The best trained XGBoost model had a cross-validation mean absolute error (MAE) of 0.47 
for log-productivity per foot.  On the testing data (25%), it had an MAE of 0.52, versus an MAE 
of 0.49 for LightGBM.  The testing R2 was 0.38 for XGBoost and 0.41 for LightGBM.  For compar-
ison, we ran a naive baseline predictor.  Predicting the mean value gave an MAE of 0.63.  The 
MAEs for the LightGBM and XGBoost models are lower than the baseline, indicating better per-
formance, with LightGBM showing the best performance.  Figure 7 compares predicted and ac-
tual 20–year estimated ultimate recoveries for the testing dataset.  The best hyperparameters 
for LightGBM were bagging fraction = 072, feature fraction = 0.57, learning rate = 0.05, maxi-
mum tree depth = 8, minimum child weight = 2, and number of leaves = 20. 

The most explanatory attributes by SHAP value were first year hydraulic fracturing fluid per 
foot lateral, distance to the nearest fault, distance to the nearest well, proppant per lateral 
length, gas-oil ratio (GOR), and fault sinuosity (Fig. 8).  Particularly low fracking fluid or particu-
larly high proppant values result in poor performance.  Drilling within one mile of a fault led to 
higher production.  Either high or low GOR was deleterious to productivity, but there was a posi-
tive influence for 1.2 thousand cubic feet per barrel < GOR < 3 thousand cubic feet per barrel.  
Good wells tended to have neighboring wells within 1000 feet, and wells drilled within 2 miles of 
particularly sinuous faults performed poorly.  The highest SHAP values for lateral length were 
from 2000–4000 feet. 

 
 

Figure 4.  (a) Average first year cumulative production and (b) 20–year EUR per foot of 
lateral, split by quarter-year.  The solid line indicates the mean performance, with shad-
ing to show the 95% bootstrap confidence interval in the average.  By both metrics, 
wells improved significantly from 2015 to 2019. 

Male and Zahm 



179 

 

Figure 5.  Locations of faults (blue) in the Karnes Trough in relation to horizontal wells 
(burnt orange) drilled in the Austin Chalk.  Counties lines are shown in gray. 

Figure 6.  Nearest distances between well laterals and faults in the Karnes Trough.                    
(a) Histogram of lateral-to-fault distances.  (b) Cross-plot of distance and EUR.  Color 
indicates the year wells were put on production. 
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SUMMARY AND CONCLUSIONS  
 
The Austin Chalk trend is a valuable drilling target.  In the area of the Karnes Trough, the 

underling Eagle Ford Shale strata are characterized by thick sections of organic-rich intervals 

Figure 7.  (a) Predictions versus actual 20–year ultimate recoveries for the testing da-
taset.  (b) Histogram of prediction residuals in log-space. 

Figure 8.  SHAP values for a LightGBM trained to predict ultimate recoveries from 
Karnes Trough area Austin Chalk wells.  High SHAP values indicate predictions of better 
performance, while low SHAP values indicate worse predicted performance.  High fea-
ture values are red, and low feature values are blue.  The features are ordered by aver-
age absolute impact on the ultimate recovery prediction. 
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(Gianoutsos et al., 2020).  This could improve productivity in the area.  Productivity from wells 
drilled in the Karnes Trough Area is comparable to Permian basin and Williston basin tight oil 
plays (Male, 2019).  Infrastructure for hydrofracture treatment and pipeline capacity is available 
due to the extensive infrastructure built for the Eagle Ford. 

Further work could include exploring several additional factors that could explain fault zone 
productivity.  Among these factors are well landing, parent-child effects, petrophysical proper-
ties such as rock strength, TOC, and water saturation, fault trap potential, stress direction and 
magnitude, and interference from Eagle Ford wells. 

Hovorka and Nance (1994) and Loucks et al. (2020) previously performed depositional and 
diagenetic analysis.  In the future, these results could be brought into a machine learning model 
to improve productivity estimation and understanding of the impact of fault zones on productiv-
ity. 

In this regional study of oil well productivity in the Texas Austin Chalk, we found that each of 
the four major regions have followed the same trends toward increasingly aggressive comple-
tions, but with uneven results.  The best responses to newer completions came from the Karnes 
Trough.  In the Karnes Trough region, mapping of faults and well laterals indicated that the high-
est producing wells are all within 2 miles of the nearest faults. 

In order to find the impact of fault zones on productivity, we built a machine learning model 
predicting EUR per length.  Our results showed that the most important fault parameters are the 
closest distance between a well and its nearest fault and fault sinuosity.  Fault bearing and 
length were of lesser importance. 
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